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The Bailey-Orowan equation 
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A simple derivation of the Bailey-Orowan equation, ~ = R/H, which is based on the spurt-like 
glide of dislocations during recovery-creep, is presented. It is demonstrated that this equation 
is valid for steady state but not for transient creep. A dislocation network model is employed 
to show that the values of R and H which are measured by stress-change techniques do not 
represent the true values of the recovery and work-hardening rates. However, the ratio of the 
measured values is always equal to the strain rate during transient or steady state creep. 

I .  In t roduct ion 
In a recent paper [1] an issue was raised over the 
validity of the methods of derivation and experimental 
verification of the Bailey-Orowan equation 

= R / H  (1) 

where ~ is the strain rate during creep while R and H 
are the recovery and the work-hardening rates, respec- 
tively. The application of this equation to both 
transient and steady-state creep presupposes the 
existence of an equation of state involving the applied 
stress, a, the creep strain, ~, and time, t. Such an 
equation of state, it was demonstrated, does not exist 
[1]. A method of derivation of the Bailey~Orowan 
equation is presented in this paper. The significance of 
the parameters R and H, and the experimental methods 
of their determination are closely examined in the light 
of this new derivation. 

2. Derivation of the Bailey-Orowan 
equation 

During recovery-creep, dislocations are often believed 
to glide in a "jerky" fashion, i.e. a dislocation spends 
a relatively long time waiting at an obstacle and, upon 
overcoming the obstacle glides rapidly to the next 
obstacle. For this spurt-like dislocation motion the 
strain Ae generated in time At when density AQm of 
dislocations are mobilized can be written as [2, 3] 

A~ = oqAQmbL (2) 

where b is the Burgers vector of the dislocations, cq is 
a constant and L is closely related to the obstacle 
spacing. 

Assuming that dislocation generation occurs each 
time a released dislocation link glides and increases its 
length in the process, the density of dislocations 
generated (A~g) can be taken to be directly propor- 
tional to the density mobilized, i.e. 

aeg = flAem (3) 

where /3 is a proportionality constant. The strain 
rate is given by Eqiaation 2, which, combined with 
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Equation 3 yields, in the limit At --* 0 

= Cq~gbL (4) 

where cq = cq//3. At steady-state the rates of dislo- 
cation generation (Og) and annihilation (~)  must be 
equal, whereupon Equation 4 becomes 

~ = ~2~abL (5) 

where the subscript s represents steady-state. 
During classical work-hardening in the absence of 

concomitant recovery, the flow stress, at, is usually 
related to the dislocation density, g, according to the 
equation 

a r = ~zoGbO 1/2 (6) 

where G is the shear modulus of rigidity of the 
material and ~o is a constant. The recovery and work- 
hardening rates are defined as 

R = -- (cgar/0t), (7) 
and 

I4  = (6ad6~), (8) 

respectively. If a previously deformed sample is sub- 
jected to static recovery at high temperature for time 
6t such that the dislocation density changes by 6~]~, 
the change in flow stress upon re-testing at low 
temperature is, from Equations 6 and 7, 

6or = - R&t - %GbcS~l~ 
2~I/2 

which gives, as cSt ~ 0, 

R = c~oGb~,/(2~ ~/2) (9) 

where ~ = -(3~/6t)~. Similarly, the change in flow 
stress when a previously deformed sample is further 
deformed by 6e in the absence of recovery such that 
density 6pg of dislocations is generated is (Equations 6 
and 8): 

or, as 6e ~ O, 

H~)~3 = o:oGb~Qg/(2Q ~/2) 

H = % G b d O g  

20 ~/2 de"  
(lO) 
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Noting that d0g/d8 = 1/(a2bL ) from Equation 4, 
Equation 10 becomes 

H = aoG/(2a2ot/ZL) (11) 

Combining Equation 11 with Equation 9 yields 

R 
- -  = a20,bL (12) 
H 

which, when compared with Equation 5 gives, at 
steady-state, 

~, = R / H  (13) 

It becomes immediately clear that even though 
Equation 12 is always true, Equation 13, or the 
Bailey-Orowan equation, is valid only at steady-state. 
Equation 13 is made possible by the equality between 
the dislocation generation and annihilation rates at 
steady-state. This, in essence, tallies with Bailey and 
Orowan's original conception of steady-state reflecting 
a balance between the two competing processes of 
work-hardening and recovery [4, 5]. 

It should be noted that Equations 9 and 11 give the 
true values of the recovery and work-hardening rates 
in the sense that their derivation does not depend 
on any particular deformation model. The use of 
Equation 6 is quite legitimate because this equation is 
expected t o  hold valid for each individual step of 
recovery and glide provided, of course, that flow stress 
changes during the low-temperature deformation are 
ascribable only to changes in dislocation density. 
Equation 4, the only other relationship used in the 
derivation, is applicable whenever dislocation glide is 
spurt-like, as is believed to be the case for pure metals 
and some solid solution alloys. 

3. The strain rate equat ion  for  recovery  
creep 

A recently proposed dislocation network model [3] 
will be used to examine the significance of the experi- 
mentally determined parameters which are often 
regarded as the work hardening and recovery r.ates. 
The model considers a distribution function q5(2, t) 
such that 4~(2, t)d2 represents the number of dislo- 
cation links per unit volume having lengths between 2 
and 2 + d2 (Fig. 1). The average link size is (2)  while 
2, is the threshold link size which favourably oriented 
links have to attain before they can glide. These can be 
expressed as 

<2) = a30 -w2 (14) 

and 

density of dislocations which are usually gliding at any 
instant is very small, which means that 2a must lie 
close to the right tail end of the distribution [6]. 

The strain rate derived from this model is [3] 

= alO(t)OabL (16) 

where 
~t(t)  = 21fpa3a5(~a,~aO -3/2 (17) 

In Equation 17, fp is the fraction of links which are 
favourably oriented for glide, qS, = ~b(2,, t) and a 5 is 
the ratio of the growth rate (during recovery) of links 
of length )~a to the growth rate of the average link size, 
<2>. Thus 

d/~a, r d<,~> 
= a s - -  (18) 

dt dt 

where the subscript r has been included to indicate 
that the change in 2a is due to recovery. 

4. Evaluat ion of  stress change tests 
Stress change tests are frequently used for the deter- 
mination of R and H, as well as the verification of the 
Bailey-Orowan equation. In the stress reduction 
method of determining R, the stress on a creeping 
sample is reduced by a small amount (Aa). If  creep 
recommences after time Atr, R is taken as Aa/Atr as 
Aa ~ 0 [7, 8]. 

If  the stress, a, on a sample creeping at steady-state 
is reduced by Aa, all links which happen to be gliding 
at the moment of stress interruption will almost 
instantly become arrested at the nearest obstacles. 
Thus no plastic strain should be observed until links of 
size Z, would have grown by recovery to the new 
threshold size 2a + A/~a,a corresponding to the new 
stress a - Aa (Fig. 2). Within this (incubation) time, 
Atr, required for creep to recommence, the whole 
network would have coarsened such that the average 
link size increases to (,~> + A(2>, corresponding to 
the frequency function qS~_A~. From Equation 18, the 
increase in 2a due to recovery is 

A2a, r = ahA<2 > (18a) 

where as will be expected to depend on the details of 
the network geometry such as the critical link size 
required for the growth of individual links as well as 
the values of (2)  and 2a. 

From Equation 14, A(Z> =-a30-3 /2A0/2  = 
a3o-3/2OaAtr/2 in the limit Atr ~ 0, where A 0 = 
-OaAtr. Combining this with Equation 18a gives 

A2~, r = a3asQ-3/2OaAtr/2 (19) 

"~a = a4Gb/a (15)  

where a3 and a4 are constants. For recovery-creep the 

<X> Xa , X 

Figure 1 Schematic illustration of the distribution function q5(2, t). 
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Figure 2 Schematic illustration of the distribution functions before 
and after a stress reduction. 
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Figure 3 Illustration of  the number  of  links mobilized upon increas- 
ing the stress by Act (shaded area). 

In the limit Ao- ~ 0, the increase in threshold size 
corresponding to a stress reduction, Aa, is found from 
Equation 15 

A)~a, c, - o~4GbAcr /a  2 (20) 

For creep to recommence after time At ,  A2,,r must be 
equal to A2a.~. Using the expression for R in Equation 
9, we can combine Equations 19 and 20 to give 

Act _ F ~30~50"2 ] 
Rm --  Atr i_C~oc~4G2b2oj R (21) 

where R m is the measured parameter which is often 
taken to be the recovery rate. Noting that a = 
o~oGbO~/2 at steady-state, Equation 21 can be written as 

Rm = L\[(~~ (~2)] R ~  f (22)  

which is valid during transient or steady-state creep. 
At steady-state 0 = 0~ and R m then becomes 

Rm. ~ - c~~ R (23) 
0~ 4 

As will be discussed later, Equations 22 and 23 show 
that the measured "recovery rate" is clearly different 
from, albeit closely related to, the true recovery rate. 

To determine H, the stress on a creeping sample is 
increased by Aa, whereupon an instantaneous plastic 
strain Ae results. H is then taken as Aa/Ae in the limit 
Aa -* 0 [8-10]. Considering the distribution function 
in Fig. 3, the threshold size 2~ decreases by A2a.~ upon 
stress increase, in accordance with Equation 20. The 
density of dislocations which are mobilized instan- 
taneously is equal to (shaded area in Fig. 3) ~a)~aA2 . . . .  

so that the strain (Ae) is (Equation 2) 

A ~  = - oq b Lfp~)a)Caa~a,  a (24) 

where fp and 2a are as defined earlier. Combining 
Equations 20 and 24 gives 

Ao 0 2 
H m  --  A ~  - cqo~4fp(Oa)~aGb2t  (25)  

where H~ is the measured "work-hardening rate". 
Noting again that a = ~oGbQ~/2 and using the expres- 
sion for H in Equation 11, Equation 25 becomes 

Hm = L ~ ~ (26) 

where ~b(t) is as defined in Equation 17, L ~- 0 -1/2 and 
0~ 2 = 0~1/ft .  B y  comparing Equations 5 and 16 it is 
clear that at steady-state, f lO(t)= 1, whereupon 
Equation 26 gives 

//ms - ~0~30~5  H (27) 
cq 

Equations 26 and 27 show that Hm is not identical to 
H at any stage of creep. 

By virtue of Equation 13, we can combine Equations 
23 and 27 to yield, at steady-state 

Rm,s R 
- - k s ( 2 8 )  

Hm,~ H 

During transient creep, Equations 22 and 26 give 

Rm R 
Hm - fl(u(t) ~ (29) 

which, combined with Equation 12 gives 

em 
- < ~,(t)&bL (30) 

Hm 

The right-hand side is again equal to the strain rate 
(Equation 16). It thus becomes quite clear that even 
though the measured values of R and H differ from the 
true values, their ratio always gives the correct value 
of the creep rate during transient or steady-state 
creep, i.e. 

Rm 
- (31) 

tim 

In terms of the true values of R and H, the creep rate 
during transient creep is (Equations 29 and 31): 

R 
= fl~b(t) ~ (32) 

Equation 32 clearly shows that the Bailey-Orowan 
equation is not applicable to transient creep. 

5 .  C o n c l u s i o n s  
The observed agreement between R m / H  m and ~ is 

really not surprising. What the stress change tests do 
is simply break the creep process into the two con- 
stituent steps of glide and recovery. Stress reduction 
(--Ao-) during creep essentially suppresses strain 
generation for a time (Atr) during which some links 
can grow past the threshold size characteristic of the 
(original) creep stress. Thereafter, an increase in stress 
(+Ao-) results in an instantaneous plastic strain (As) 
due to the glide of these newly generated "mobile" 
links. In the limit Ao- --, 0 a cycle of alternate stress 
increase and reduction becomes identical to a (con- 
stant stress) creep test, and the strain rate is equal to 
the strain generated during the cycle (Ae) divided by 
the elapsed time (Atr), i.e. 

_ As _ A~r/At r _ R m 

At r Aa/Ae H m 

In concluding, it is emphasized that the quantities 
R m and H m as determined from stress-change tests do 
not represent the true values of the recovery and 
work-hardening rates. At steady-state both Rm and H m 
differ from R and H by the factor c%c~ 3 e5/0~4 (Equations 
23 and 27). Although each of the parameters c%, c~ 3 and 
cq is expected to be of the order of unity, the value of 
~5 could be much larger than one, depending on the 
kinetics of network coarsening. In such a case appreci- 
ably overestimated values of R and H will result. The 
fact that the (measured) values of R m have been close 
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to the relaxation rate [11, 12] while those of Hm have 
been of the order of the elastic modulus [10, 13] is 
evidence of their gross over-estimation. 

From Equation 11, H = (~0/2~2)G -- (%fl/2~1)G 
if we take L - r ~/2. As % and ~ are close to unity, 
the usual observation that H is orders of  magnitude 
lower than G during low-temperature deformation 
implies that fl < 1. Furthermore, H should be inde- 
pendent ofr  as is actually the case during the stage II 
deformation of single crystals. The observation that 
Hm increases during transient creep [8, 9] could be 
ascribed to the time dependences of r and ~b(t) in 
Equation 26. 
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